Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments

نویسندگان

  • Alexandrin Popescul
  • Lyle H. Ungar
  • David M. Pennock
  • Steve Lawrence
چکیده

Recommender systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommenders, content-based recommenders, and a few hybrid systems. We propose a unified probabilistic framework for merging collaborative and content-based recommendations. We extend Hofmann’s (1999) aspect model to incorporate three-way co-occurrence data among users, items, and item content. The relative influence of collaboration data versus content data is not imposed as an exogenous parameter, but rather emerges naturally from the given data sources. However, global probabilistic models coupled with standard EM learning algorithms tend to drastically overfit in the sparsedata situations typical of recommendation applications. We show that secondary content information can often be used to overcome sparsity. Experiments on data from the ResearchIndex library of Computer Science publications show that appropriate mixture models incorporating secondary data produce significantly better quality recommenders than k-nearest neighbors (k-NN). Global probabilistic models also allow more general inferences than local methods like k-NN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preference Networks: Probabilistic Models for Recommendation Systems

Recommender systems are important to help users select relevant and personalised information over massive amounts of data available. We propose an unified framework called Preference Network (PN) that jointly models various types of domain knowledge for the task of recommendation. The PN is a probabilistic model that systematically combines both content-based filtering and collaborative filteri...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Subgroup Analysis Based On Domain Sensitive Recommendation

Collaborative filtering is an effective recommendation approach in which the preference of a user on an item is predicted based on the preferences of other users with similar interests. A big challenge in using collaborative filtering methods is the data sparsity problem which often arises because each user typically only rates very few items and hence the rating matrix is extremely sparse. In ...

متن کامل

A Unified Recommendation Framework Based on Probabilistic Relational Models

Zan Huang, Daniel D. Zeng, Hsinchun Chen Department of Management Information Systems, The University of Arizona {zhuang, zeng, hchen}@eller.arizona.edu Abstract Recommender systems are being increasingly adopted in various e-commerce applications. A wide range of recommendation approaches have been developed to analyze past consumer-product interactions, consumer attributes, and product attrib...

متن کامل

Exploring Social Influence for Recommendation - A Probabilistic Generative Model Approach

In this paper, we propose a probabilistic generative model, called unified model, which naturally unifies the ideas of social influence, collaborative filtering and content-based methods for item recommendation. To address the issue of hidden social influence, we devise new algorithms to learn the model parameters of our proposal based on expectation maximization (EM). In addition to a single-m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001